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GENERALIZED EULER CONSTANTS 
FOR ARITHMETICAL PROGRESSIONS 

KARL DILCHER 

ABSTRACT. The work of Lehmer and Briggs on Euler constants in arithmeti- 
cal progressions is extended to the generalized Euler constants that arise in the 
Laurent expansion of g(s) about s = 1 . The results are applied to the sum- 
mation of several classes of slowly converging series. A table of the constants 
is provided. 

1. INTRODUCTION 

The Riemann zeta function 4(s) has the following Laurent expansion about 
its pole s = 1: 

00 

(1.1) C(5) = 5 _ 1 + EAk(s- 1)k. 
k=O 

The coefficients Ak are given by 

Ak= 'k ! 

where 

(1.2) lm nJlogk log k+1n 
k)=, 1, 2, 

(we set log0 1 = 1). It is clear that yo = y, the Euler constant. The expansion 
(1.1) was independently established by several authors, and the Yk have been 
studied quite extensively. For a short historical survey, see [3, p. 164 f.]; more 
recent references not included in [3] are [4, 11, 17, 18, 19]. The coefficients 
Ak are usually called Stieltjes constants, and the numbers Yk are sometimes 
referred to as generalized Euler constants. 

In this paper we shall consider generalizations of Yk that arise by taking the 
sum in (1.2) over an arithmetical progression. More exactly, denote 

(1.3) Hk(x,r,m)= E logkI n 
O<n<x 

n_r (mod m) 
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and define 

)~~-lim'Hr ~ log k+x ( 1.4) Yk (r v m) := Xlim {Hk( r , m) ( 

These constants were previously studied by Knopfmacher [14] as special cases 
of a wider class of generalized Euler constants. The case k = 0 was considered 
by Briggs [6] and Lehmer [15]. 

The purpose of this paper is to derive further properties of the constants 
yk(r, m), several of them generalizing results in [6, 15]. This is done in ??2- 
4. In ?5 (and already earlier) this will be applied to the summation of several 
classes of very slowly converging series; some of these results are known, while 
others appear to be new. In ?6 we shall derive explicit expressions for YI (r, mi), 
m = 3, 4, and 6. A connection with a class of generalized gamma functions 
will be given in ?7. Finally, in ?8 we shall make some remarks on numerical 
calculations of the Yk (r, m); a table is provided, with 1 < k < 20, 1 < m < 9, 
and K< r < m. 

2. BASIC PROPERTIES OF THE yk(r, m) 

The existence of the limit in (1.4) was deduced by Knopfmacher as an ap- 
plication of his more general theory in [14]. This and other results from [14] 
could also be proved directly by following the corresponding proofs for k = 0 
in [15]. 

It follows immediately from (1.3) and (1.4) that 

(2.1) Yk(l, 1) = Yk 

and, since Hk(x, r + m, m) = Hk(x, r, m), we have 

(2.2) Yk(r ?in, m) = Yk(r, m). 

Because of (2.2), we may restrict our attention to 1 < r < mi. 

Proposition 1 [14]. Let k > 0, m > 1, and let d be a common divisor of r 
and m. Then 

(2.3) Yk(r, m) = d- (kl,) (logd)kvyv (r m d logk+ d 
d xVv/ \d' dl m(k + 1)' 

If we set r = d = m and take (2.1) into account, we get the following special 
case of (2.3). 

Corollary 1. For all k > 0 and m > 1 we have 

(2.4) Yk(m, mi) = mE (kN) (log m )kv - logk + l m 

In particular, 

(2.5) yO(m, m) = -(y - log m), 

(2.6) Y' (m, m) =- yQ + ylog m - 2 log2 m) 
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Note that with k = 0 in (2.3) we get 

yo(r, m) = -Yo (5, d) - mlogd; 

this is just Theorem 2 in [15]. Also, (2.5) is equation (2) in [15]. The next 
property is another analogue to a result (containing a misprint) in [15]; it is 
almost immediate from (1.4) and (1.3). 

Proposition 2. There holds 

n-I 

(2.7) Z yk(r + jm, nm) = yk(r, m). 
j=0 

In particular, 
m 

(2.8) Z Yk(r, m) = Yk 
r= 1 

Proposition 3. For k > 0 and m > 1 we have 

(Yk(M, 2m) = Z ($ k) y (2 logk m logk-v2) 
2mV= 

(2.9) = 
2 logk+1 m - logk+l 2m 

2m(k + 1) 

In particular, 

(2.10) yo(m, 2m) = 2 (y-log 2)' 

(2.11) y1(m,2m)=2 yi+y logm2 +2 log2 2m- log2m). 

Proof. Equation (2.7) with n = 2 and r = 0 gives 

yk(m, 2m) = Yk(0, m) - 2k(0, 2m) = yk(m, m) - yk(2m, 2m). 

The assertion (2.9) now follows from (2.4). cl 

3. SERIES REPRESENTATIONS FOR Yk(r, m) 

We define the arithmetic function g,(m) (n) by 

gr(m)(n) fm- I when n _ r (mod m), 
- 1 otherwise. 

Proposition 4. For k > 0, m > 2, and 0 < r < m - 1 we have 

(3.1) ~ ~ ~ ~ ~ ~~~0logkn ( 

(3.1) rMyk(r,m)=yk+Z n g(m)(n). 
n=1 

Proof. Following [15], we denote for 0 j < j - 1, 

m-i 

(3.2) aj Z Yk(, m)e2ziAj/. 
A=0 
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Then by (2.8), 

(3.3) 90 = Yk 

To simplify notation, we write e := exp(27ri/m). Let j 0 0. We use the fact 
that 

m-1 

(3.4) e A' = 0. 
A=o 

Then by (1.4) and (1.3) we have 

ci = lim { (Hk(x, A, m) - (k+l)mn) A} 

that is, 
(3.5) (Jj = ,logk n 

n=1 

We solve (3.2) for the Yk (A, m) by multiplying both sides by E-jr and summing 
over j. Taking (3.4) into account, we get 

m-1 ~~m-1 m-1 
Z (Ji j = Z Yk(', m) E g](A-r) = myk(r, m). 

j=O A=0 j=O 

Hence, with (3.3) and (3.5) we get 
rn-1i logkn 

(3.6) mYk(r, m) = Yk + Z - j j . n 
j=i n=1 

Now formally, 

(3.7) mYk(r, m) = Yk + logk_ (n-_) Zn 
n=1 j=i 

The change in the order of summation of this conditionally convergent series 
can be justified by taking the appropriate limits for aj and the infinite series. 
Now by the definition of grnm)(n) and by (3.4) we have 

m-1 
Eg r(n) = gr (n) 

j=l 

The result (3.1) now follows from (3.7). c 

Remark. For an easier proof of (3.1), see the example after Proposition 9. How- 
ever, we still require (3.6) and (3.7) elsewhere. 

Proposition 5. For k > 0 and m > 2 we have 

(3.8) E n (rn) = n (k>) (logiM)k-vy, - logk+im 
L. nl WI! k+1I 

Proof. Take r = 0 in (3.1) and combine with (2.3). cl 

We consider now the special cases k = 1 and (independently) m = 2. If we 

note that g(2)(n) = (-1)n,the following becomes obvious from (3.8). 
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Corollary 2. For m > 2 we have 

(3.9) y= 1ogm + l 1 lon g0 (n) 

and in particular 

(3.10) y - log2 + l E(- I)n_ 

For k > 0 we have 

(3.1 1) Z(-_) lnog n = (k) (log 2)k- ylo k+2 
n=1 v=Ok+ 

Corollary 3. If we set 

( log n (n 

k '= E n go (n), to(m)=-logm, 
n=1 

then we have for all m > 2 

(3.12) 2'k = k 1 k+1 1 (3.12) Y +1k (k + (log m)j 1 Bj T4m) 

where Bj is the jth Bernoulli number. 

Proof. This was shown in [16] for m = 2 by inverting the matrix of the tri- 
angular linear system (3.11). The proof carries over to arbitrary m without 
change, solving the linear system (3.8). C1 

Remarks. 1. While (3. 10) is a well-known series expansion for the Euler constant 
(see, e.g., [10, p. 288]), (3.9) appears to be little known. It was previously proved 
by Kluyver [13] and rediscovered by Jacobsthal [12]. 

2. The expression (3.12) was proved by Kluyver [1 3]; note that a different 
notation for the Bernoulli numbers was used in [ 1 3]. 

3. The expansion (3.11) was proved by Liang and Todd [16]; it was used 

there to compute the Tk - T 2) for 1 < k < 20 to 15 digits accuracy from the 
previously computed Yk. 

4. With k = 0 in (3.8) we get 
00 

log m =-E-g6m (n) 
n=1 

(3.13) 1+ 
1 rn-i 1 

2 mr-I m m+1 
1 mr- 

+ + 2m- 1 2mr 

this was proved in [15, p. 136; 12]; it is a generalization of the alternating 
harmonic series for log 2. 

Next we replace m by 2rm in (3.1) and set r = m . Then we get the following 
result. 



264 KARL DILCHER 

Proposition 6. For k > 0 and m > 1 we have 

, logng(2m) (k)(21ogk-v M_logkn 2m)yk 

(3.14) n=1 v=O 

- 1 (2logk+l m - logk+l 2m). 

Again, we consider special cases, for k = 0, 1, 2 and for m = 2. 

Corollary 4. For m > 1 we have 
00 

(3.15) ng m2)(n) = -log2' 
n=1 

c log n (2m) 2 1+I o2 
(3.16) EZo g m2m)(n) =ylog m -logm+2log2m, 

n=2 

and in particular 

(3.17) E logn g(4) 2 , 
n=2 

l n gm2m) (n) = y(2 log2 m - log2 2m) + 2yi (2 log m - log 2m) 

(3.18) n=2 

- 2log3m+ 3log 2m, 

and in particular 

(3.19) y=log2-2l 2 Elo ng(4(n) 
2o2n=2 

Remarks. 1. With m = 1 in (3.14) we get (3.11) again; note that g(2)(n) = 

(-1 )n-1 
2. Formula (3.15) is another generalization of the type (3.13) of the alternat- 

ing harmonic series for log 2. For m = 2 we get 

_I + 2-3-4S1 1 +3 1 17-8 + 3 _1 0. 
2 3 4f- +6 78-9+m 11 -T 

4. PRIMITIVE Yk(r, m) 

Following Lehmer [15], we call Yk(r, m) primitive when r and m are co- 

prime. If yk(r, m) is not primitive, then it can be expressed, via (2.3), in terms 

of primitive yv(ri, in1), 0 < v < k. This suggests a more detailed study of 
primitive yk(r, m). 

In agreement with the notation in [1 5], we set 

(4.1) Ok(m) Z yk(r, m). 

(r,m)=1 
1 <r<m 
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For j = 0, 1, 2, ... we introduce the sums 

(4.2) Nj(m) := E p(d) d-logi d, 
d I m d 

where p(d) is the Mobius function. In particular, we have 

(4.3) No(m) = , u (d) = (p (m) 
d Im 

(see, e.g., [2, p. 26]) and 

(4.4) Ni(m) = -p(m) E logp 
p I mp 

(see [15, p. 131]), where (0(m) is the Euler totient function. The following 
result is a generalization of [15, Theorems 3-5]. 

Proposition 7. For all k > 0 we have 

(4.5) mqMk(m) = E ( ) yjNk(m)- k 1 Nk+l(m). 
1=0 

Proposition 7 could be proved by induction, following the proof of Theorem 
3 in [1 5]. However it is easier to proceed as follows. We first need a lemma. 

Lemma 1. For all k > 0 and m > 1 we have 

(4.6) E Yk(r, m) = E u(d)yk(O, d). 
(r,m)=I dIm 

Proof. We use (2.7) with r = 0, m = d, and n = m/d, to get 

mld-i 

Yk(d, m) = yk(0, d) = Yk(d, d). 
j=0 

Multiplying both sides by u(d) and summing over all d I m, we obtain 

m/d-1 

Zu(d)yk(d,d)= Z(d) Z yk(jd, m) 
dIm dIm j=O 

m-1 

=ZYk(r, 

m) E ,u(d). 
r=O dI(r,m) 

Here the inner sum was obtained by noting that d has to divide both r and 
m, hence the g.c.d. of r and m. By a basic property of the Mobius function 
(see, e.g., [2, p. 25]) the inner sum is zero unless (r, m) = 1. Thus we obtain 
the left-hand side of (4.6), and the proof is complete. n 

Example. Let m = 6 and k = 0. Then (4.6) becomes 

y(1, 6) + y(5, 6) =y(1, 1) - y(2, 2) - y(3, 3) + y(6, 6). 
This agrees with Table 1 in [1 5]. 
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Proof of Proposition 7. In (2.4) we replace m by d, multiply both sides by 
ju(d), and sum over all d I m . Then, by (4.1) and (4.6), we have 

mqk(m)= E (d) 
m 

{ ()v (logd) Yv- kf+l1} 

If we now change the order of summation and use (4.2), we get the right-hand 
side of (4.5). This completes the proof. El 

Remarks. 1. With k = 0 in (4.5), and using (4.3) and (4.4), we get 

mqo(m) = (P(m) {Y + YZ logp } 

This is Theorem 3 combined with Theorem 5 in [15]; see also [6]. 
2. With m = 1, (4.5) reduces to (2.1). 
3. Knopfmacher [14] proved the following version of (4.5). For prime num- 

bers p, define 

co(p) 1 - - and c1(p) := (-)i+l p (i > 1). 
p p 

Now for integers m > 1 denote 

a5m) Z E 1I cip(p) 
p I m 

where the sum is taken over all ip with Yp ip = j. Then, in our notation, 

(4.7) ) = a( + k! k-yi ya(m) 
j=O k-j 

Incidentally, comparing (4.5) and (4.7), we can prove by induction (beginning 
with a(m) = NO(m)lm) that 

Nj(m) = (-l)jmj!a5m). 

Lehmer showed in [15] that if 3 is a divisor of m, then q$o(3m) = q$o(m). 
This property holds also for qk (M), k > 1. 

Corollary 5. Let k > 0, m > 1, and a I m . Then qk(m) = qk(m). 
Proof. Any divisor d of 3m that is not already a divisor of m has to be 
divisible by a square. But jt(d) = 0 if d is not square free. Hence, by (4.2) 
we have N1(3m) = 3N1(m) for j = 0, 1, 2, . The result follows from 
(4.5). El 

The next application of Proposition 7 is an analogue of Theorem 6 in [1 5]. 

Corollary 6. For k > 0 and m > 2 we have 
rn-i 

0lg 27rnj\ U(in/(in I) ~ ~ logk nCos Ip o(m) 
(4.8 1=n m) (m/(m,Aj)) 

(4.8) j=1 n=1 

yjN k+1 M 

J=o 
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Proof. We sum (3.6) over all r < m relatively prime to m. Then, with (4.1), 
we get 

(4.9) mqk(m) = (p(m)Yk + j (E l gnj e ) Er m e= 
j=1 n=1 (r, m)= I 

The last sum in (4.9) is a Ramanujan sum Cm (j), evaluated by H6lder's formula 

(j) ( jt(m/(m, j)) 
cm(I) = (o (m) q(m/(M, I) 

(see, e.g., [2, p. 164]). Since all the other terms in (4.9) are real, we may replace 
the infinite sum by its real part. We get now (4.8) by applying (4.5). cl 

Remark. If in (4.8) we let m be a prime p or a power of a prime, we will get 
(3.8) for m = p. To see this, we use the fact that 

Z cos = 0 if r _ O (mod m), m 
1=0 

and apply the definition of gr,m)(n). Also note that with (4.2) we have for 
integers a, 

Nj (p) = pa-I logi p, j = O, 1, 2, .. 

If m has at least two different prime factors, (4.8) will give new summation 
formulas. However, it will be more convenient to use (3.1) for this purpose. 

Corollary 7. For k > 0 and m > 2 we have 

00 
logk n -gi(m) 

kI 

(4.10) nlo flk Z 
g,Sk)(nI k (';) 

n=1 (m,r)= N j=N 

and in particular 

(4.11) ZE - Z gr(m)(n)= (m) logP 
n=1 (m,r)=1 pIm 

logn grm)(n) 

(4.12) n=1 (m,r)=I 

=-y(P(m) , log p - I1: u ,(d) d log2 d . 
p Im dIm 

Proof. Sum both sides of (3.1) over all r < m relatively prime to m, and apply 
(4.1) and (4.5). The change in the order of summation can be justified by going 
back to the limits defining the Yk (r, m) . cl 

Example. Let m = 6, the smallest positive integer with two different prime 
divisors. Let 

h(6)(n) g j g(6 (m) = g(6 (n) + ( (n) 4 ifn= 5 (mod 6), 

(6,r)=1 g5 -2 otherwise. 
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Then, with (4.1 1) and (4.12), we get respectively 
00 

Z-h(6) (n) = 2 log 2 +log 3, 
n=l 

lg h(6) (n) = (log 3 - 2 log 2)y + 2 (3 log2 2 + 2log2 3-log2 6). 
n=l 

We note that if h(m) (n) is defined as above, we always have 

h(m)(n) m- (p(m) if (n, m) = 1, 
- -(p(m) if (n , m) > 1. 

5. SUMMATION OF CERTAIN SERIES 

In this section we consider two applications of the Yk(r, m) to the summa- 
tion of series involving k th powers of the logarithm. The first application is 
an analogue to Theorem 9 in [1 5]. 

Proposition 8. Let k > 0, N > 2, and let (r,, iml), (r2, M2), ..., (rN, MN) 
be pairs of positive integers for which 1 < rj < mj, j = 1, 2, .. ., N, and such 
that the rational numbers rj/mj are distinct. Then the series 

. Slogk(min + ri) logk(MNn + rN) (5.1) Sk :=Z E cI ln r +*+ CN Mn+ 
n=O t mln+rl mnN+rN 

converges if and only if 

N 
(5.2) S logvmj = O for v = O, 1, ...,k. 

If the series (5.1) converges, then 

N I(l1 k+l1M 

(5.3) Sk=jcJ Yk(rj,mj)+Mj k+l 
j=1 ' 

Proof. We adapt the proof of Theorem 9 in [15]. We have 

N logk(mjn+rj) 
Sk m iZcj Z 

j=l O<n<x jn + rJ 
N 

= lim EcjHk(mx, 
N -+fHk(MJX, rogkl Mn1x j=l 

c1logogk?l(mjx) =: cj Xli mo{ Hk (mjx , rj , mj ) -(k+ )} 

li Cj log kl(mJ x ) 
XT-+Z0 mJ k+1 
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Now we use (1.4), and in the second sum we expand logk+l (mjx) with the 
binomial theorem. Then, after a change in the order of summation, we get 

Sk N7(. V cj log k+I Mj 
'Sk 

= 
: 

ECjYk(rj , mj) + E mj ko + I 
j=1 j=1 

{k (k +I\ c 
+ lim Ek+1 ) (ii logvmj) logk+I-vx} 

It is now clear that the limit exists if and only if (5.2) holds for M = 0, 1, . .. , k . 
This proves Proposition 8. 0 

Example. Let 

Si=Z { {log(n + 1) 2log(2n + 1) + log2 
n=O n12+ n1J 

We can rewrite 

SI =E { n + 1 42n + I + 44n + 2 } 

and verify that (5.2) holds. Hence the series converges, and we have by (5.3), 

Sl yIl (, ) -{ yIl (1, 2) + 
I 

o22} + 4 {yl (2,4) + 
I 

o24} 

Finally, with (2.1) and (2.1 1), we get 

SI = (3 log 2 + 2y) log 2. 

We consider now the special case where all the mj are equal. Then (5.2) 
reduces to the condition that the sum of the cj be zero, and consequently the 
logarithmic terms in (5.3) disappear. Hence we have 

Corollary 8. Let k > 0, N > 2, and let m and r1, r2, ..., rN be positive 
integers such that 0 < ri < r2 < ...< rN < m. Let C1, C2, ...,CN be real or 
complex numbers such that C1 + C2 + * + CN = 0. Then 

0 
__lok_mn__r_ logk (mn +rN) 

N 

(5.4) E Cl mn + r I 
+ + CN mn + rN ECjYk(ri, m). 

In two particular cases, the sum of the series can be given in terms of the yJ, 
j=O, 1,...,k. 

Corollary 9. For k > 0 and m > 2 we have 

00 
{logk(mn + j) )logk(m(n + 1)) 

( _ m - (m - m(n-+1) 
(5.5) k-I~~ k?I 

(lo M--v log m 
=- $V )(lg)ky k+1I 
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Proof. We use (5.4) with cl = c2 = ..= cmI = 1, cm =1 - m. With (2.8) 
and (2.4), the right-hand side of (5.4) becomes 

rn-i m 

Z Yk(j, m) - (m - l)yk(m, m) = UYk(J, m) - myk(m, m) 
j=1 j=1 

=Yk-E v (log m)k1 YV + logk+l m. 

V=O ~ ~ k+ 

This proves (5.5), since the terms involving Yk are cancelled. El 

Example. For k = 1, the right-hand side of (5.5) is simply ((log m)/2- y) log m . 

Corollary 10. For k > 0 and even integers m > 4 we have 

00 
| , logk(mn + j) logk(mn + m/2) 

n=O m(j,m)=1 mn+J mn+m/2 

(5.6) ( /ogk-j m logk)j } 
- ~~ y) N'Ik-j(m) - (O(in) 2lo 

- m( + ) Nk+l (m) - f(m) (2lg+ 2 - logk+ m)} 

where the Nj (m) are defined by (4.2). In particular, 

I z log(mn + j) log(mn + m/2) 

n=O (j,rm)=1 mn+j mn+m/2 J 

(5.7) mY)m {E p-_ + logm - 2log2} M p I m 

- 2m {Z/,u(d) d logd - (p(m) (2 log2)logm)} 

Proof. We apply (5.4) with N = m, rj = j for j = 1, 2, ...,m, Cj = 1 when 
(j, m) = 1, c = 0 otherwise except CmI2 = -(p(m). Then the right-hand side 
of (5.4) becomes kk(M) - (o(M)yk(mi/2 , m), where Ok(M) is defined by (4.1). 
We obtain now the right-hand side of (5.6) from (4.5) and (2.9). With (4.4), 
we immediately get (5.7). El 

Example. With m = 6, the relation (5.7) becomes after some calculation 

f{log(6n + 1) 2Iog(6n +33) + Iog(6n + 5) 2 3 og y 

The second application of the Yk (r, m) is an analogue of Theorem 8 in [1 5], 
proved by Knopfmacher [ 14]. 
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Proposition 9 [14]. Let g(n) be an arithmetical function, periodic with period 
m. Then 

00 logk 

(5.8) Sk(g) := g(n) n 
n=1 

converges if and only if 
m 

(5.9) , g(j) = O. 
j=1 

If Sk(g) converges, then 
m 

(5.10) Sk (g) = Eg(r)yk(r, mi). 

r=1 

Example. The function g(n) = grm)(n), as defined in ?3, satisfies (5.9). Hence, 
Proposition 9 implies (3.1) upon applying (2.8). 

A second application of Proposition 9 is given in the next section. 

6. SOME EXPLICIT EXPRESSIONS 

Let g(n) = X(n) be a nonprincipal Dirichlet character modulo m, and 
00 

n 

L(s, x) = 
E ns 

n=1 

the corresponding Dirichlet L-series. Then its kth derivative is 

L(k)(S X) = (_1)k E X(n) log n 
n=1 

and with Proposition 9 we get the following, as was noted by Knopfmacher [14]. 

Proposition 10 [14]. For k > 0 we have 
m 

(6.1) L(k)(1, X) = (-1)EZX(r) Yk (r, m). 
r= 1 

For k = 0, this was shown by Lehmer [ 1 5]. The connection between L( 1, x) 
and the class number of quadratic fields enabled Lehmer in [15] to give explicit 
expressions for the right-hand side of (6.1 ) in the case k = 0 . 

If k = 1 and X is an odd character (i.e., X(-1) = -x(1)) modulo f, then 
L'( 1, X) can be expressed in terms of classical functions (see, e.g., [8, p. 182]), 

(6.2) L'(1,X)=i7r t (y+ log27r)B, x+ 
=%(v)logF($)f } 

where 
f 

(6.3) T(X) = ZX(v)e2,ivlf 
v=o 
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is the normalized Gauss sum associated with X, and B1 x is the first generalized 
Bernoulli number belonging to the character x; it can be expressed as 

If 
(6.4) Bi x =- E (V) 

v=1 
In the special case where x is an odd quadratic character, we have % = x and 
z(x) = id/7 (see, e.g., [5, p. 349]). Also, since x(f - v) = -%(v), and using 
the well-known functional equation F(1 - z)F(z) = 7/ sin7rz, we have 

f 
(M) [f12] F(VIf) 

Zx(V) logF E)= Ex(v) log F(v)) 
v=1 f v=1 F((f -v)/f) 

[f/2]v2si(vf 

~x(v) log si(rvf 
v= 1 

Hence, with (6.2), we get 

L'( 1, X) = -$- { (Y + log27r)BI, x 

(6.5) f22 

+ E X(v) lOg[r ) sin(7w/f)] } 
Example 1. Let f= 3, i.e., x(l) = 1, X(2) =-1, (3) = 0. Then from (6.4) 
we have B1 x= -, and we get with (6.5) 

Now by (6.1) we have 

(6.6) Y, (I, 3)- y'i(2, 3) = -L'(1, x). 
On the other hand, (2.6) gives 

y1 (?, 3) = y, (3, 3) =( + y log 3 - I log2 3), 

and with (2.8) we have 

(6.7) yi(I, 3) + yi(2, 3) = y, - yi(0, 3) = - 1ylog3 + 6log2 3. 

Finally, we combine (6.6) and (6.7) to get 

(6.8) yi(2, 3) = { 24y - 1 yplog3 + ? log2 3 - L'(1, X)} 

(6.9) y, (2, 3) = 1 23y,-3 lylog 3+ 6 log2 3 +L'( 1, )}. 

Example 2. Let f = 4, i.e., x(l) = 1, x(3) = -1, x(2) = x(4) = 0. Then 
(6.4) gives BI, = -2, and (6.5) gives 

x){ vX- Xt |y + log27r) 
I 
+log FlA X1 
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Now by (6.1) we have 

(6.10) yl(1, 4)- (3, 4) =-L'(1, X). 

From (2.6) and (2.1 1) we get 

Yi (2, 4) = I 
(yi + log2 2), 

y2 (4, 4) = 4 (y, + 2y log 2 - 2 log2 2), 

and (2.8) gives 

(6. 1y1)l(1, 4) + y(3' 4) - yj(2 + - yjg4 2 
= _i- 2 ylog 2 +log22. 

We combine (6.10) and (6.1 1) to get 

yl(1, 4) = Ify - lylog2+ I log22 -L'(1, x)}, 

yl(3, 4) = Ify1- lylog2+ I log22 + L'(1, x)}. 

Example 3. Let f = 6, i.e., ,(1) =1, (5) = -1, (n) = 0 for all other n 
(mod 6). Note that the character x is not primitive; we can write 

L(s, X) = (1 + 2-s)L(s, V/), 

where qi is the quadratic character of conductor 3 from Example 1. Differen- 
tiating both sides, we get 

L'(1,X) =3L'(1, /) - log 2L(1, V/). 2 ~~~2 
To determine L(1, V/), we use the well-known generalized Euler formula 

L(1 , V/) =i7 (v) )B1 

(see, e.g., [8, p. 182]). With T(q/) = i/7, f = 3, and B1l, = -3, this 
becomes L(1, V) = V'0/9, so that 

(6.12) L'(1, x) = LL'(1, lo- 18 3. 

With (2.3), we have now for r= 1 and r = 2, 

- log 3) + !y(r I log22 
yi(2r, 6)- 2 yo(r, 3)+ 2y (r, 3)- 12 2. 

In [ 15] we find, with e(1) = 1 , e(2) = -1, 

yo(r, 3) = 3-y+e(r)-fx+ 610g3, 

and with (6.8) and (6.9) we get 

yi(2,6)= log2( 71 < +log31 
(6.13) 6 \6 2/ 

+ -i! (2y, - ylog3?+ ~-lo3 o2) - -L'(1, qi), 
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y, (4, 6) = l2 Q- + 2log 3) 

+ - 2 (2y, - ylog3 + log23 -log22) + L'(l, u). 

Also, by (2.11) and (2.6) we have 

(6.15) y, (3, 6) = 1(Y y+ y log 
3 

+ 2 log26 log2 3) 

(6.16) y, (6, 6) = I(y, + y log 6 - I log26). 

Now, with (2.8) and (6.13)-(6.16), we get 

y2'(1, 6) + Yi(5, 6) =y - [yi(2, 6) + yi(4, 6)] - [Yi(3, 6) + y2'(6, 6)] 

(6.17) =I {y1 -y(log2+ I log3)- I log2log3 

+ I log2 2 + 
I 

log2 3}. 

On the other hand, by (6.1) and (6.12), we have 

Y(l(, 6)- yj(5, 6) 
3 

L'(l, /)+ 
log 2 

J' 

and combining this with (6.17), we obtain 

yi(I , 6) 
I 

{Y, - y (log2 + 
I 

log3) Ilo 2 log21 3 + 
I 

log2 2 + 
I 

log2 3} 

3 +log 2 Vr-7 

-4L'1 ') + 36 

y,(5, 6) I y6 - -y (log 2+ 2 log 3 - lo0g2 log 3+ - 02 + 4g3} 

+ 3L( V/) - 
log 

VJ7. 

Finally, we note that the numerical values of the explicit expressions in Ex- 
amples 1-3 agree with the computed values in Table 1. 

7. CONNECTIONS WITH GENERALIZED GAMMA FUNCTIONS 

Let q,(z) be the logarithmic derivative V (z) = F'(z)/F(z) of the gamma 
function. Lehmer [ 15, p. 133] proved the following relationship between Vg(z) 
and yo(r, m): 

(7.1) yo(r, m) = --{Ur (r) +logm}C 

In this section we shall prove an analogue of (7.1) involving Yk (r, m) for arbi- 
trary k > 0. For this purpose, we introduce higher analogues of the y'-function 
as follows. For integers k > 0 and for complex z :$ 0, -1, -2, ... let 

(7.2) Vk (Z) =-Yk- -logk-E {l ofg k(V + Z) _ log k v 
z E ~v + z V 

Note that for k = 0 this is a well-known representation for ig(z). For general 
k, this function occurs in Ramanujan's second notebook (see [3, Chapter 8, 
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Entry 22]). The case k = 1 was studied by Deninger [8]. The function q/k(z) 

can be considered as the logarithmic derivative of an analogue Fk(z) of the 
gamma function; for properties of this Fk (z) and further connections with the 
Yk, see [9]. 
Proposition 11. For k > O, m > 1, and 1 < r < m we have 

(7.3) Yk (r, m) m { k +7' + E ($v) (log m)kv q' ( r) } 
In particular, for k = 0 we get (7.1), and k = 1 gives 

(7.4) yi (r, m) = 2 log2m + (log m)q (Lm) + /'I 

Proof of Proposition 11. We begin with a slight modification of the definition 
(1.4) and (1.3), valid for 1 < r < m, 

(7.5) Yk (rJ m) = lim 
n 

logk (jm + r) _ logk+l(nm + r) } 

11=0J 

We use binomial expansions to obtain 
k 

logk(jm + r) = (k$) logk-v m logv (j + r 

v=0 

and 

logk+1 (nm r) k+1 k ( I ) r 
= E(k+ l+gk+log mlogv(n+i/) 

k + ~v=0k 

log k+1 m Zk )k lokv logv+1 (n? r/m) 

Hence, 

~logk+1 M + ~k)k (log M)k-v 
Yk (r, m) = ?k m+ E(k (1 )- 

m(k?+ 1) v=0 

(7.6) m logv (j + r/m) _ logv+l(n + r/m) 

n*o.o i.=0 j +rlm v+1 I 

On the other hand, we have 

(7.7) YV= lim 
n 

logy j logv+1 n 
n 1o j v + 

j=1 

We obtain now (7.3) by subtracting (7.7) from (7.6), using (7.2) and the fact 
that for fixed z, 

lim {logv+l(n + z) - logv+l n} = 0. 
n-*oo 

This last limit can be found by way of a binomial expansion of logv+l (n + z) = 

(logn + log(1 + z/n))v+l . The proof is now complete. El 
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Remark. From (7.2) it follows that qk (l) = -Yk. Thus, (7.3) with r = m 
implies (2.4) 

We give now two applications of Proposition 11. The first one is a special 
case of a result of Ramanujan (see [3, p. 222]). 

Corollary 11. For k > 0, m > 1, and 1 < r < m we have 

mEZ k( )=( 1)k+lo _ Yk 

(7.8) k 

- Z ( k ) (-1 )j (log1m) Myk 
j=1 

and in particular 

m-1 

(7.9) Z Ci(-) = -mlogm - (m - 1)y, 
r=1 

m-1 r log2 M 
(7.10) E V,I(L-) = m _2 - (m - l)Yi + m(logm)y. 

r=I 
Proof. We sum both sides of (7.3) over all r, 1 < r < m - 1, and use (2.8) 
and (2.4). Then 

Yk = lg m_ k (log m)k-v /^m Yv) 

To simplify notation, we set 
m-1 

Av, Iv(v ) -y; 

then 

log k+I m k-Ik/~ (7.11) Ak = -myk-m k+1 Z, I) (logm)k-vA. 
v=O 

We prove now (7.8) by induction. For k = 0, the relation (7.11) gives (7.9) 
immediately. Now suppose (7.8) is true up to k - 1. We substitute Av from 
(7.8) into (7.1 1) and get 

log k+m 
Ak= -myk-m k + m+ MSk 

(7.12) k-I 

+ mE (V) (logm)k-vy1 + mTk, 
v=O 

where 

S k:-I k) (- (logM)k-v(logM)v+l 
v=O + 

v=O~~~~~ 
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and therefore 

(7. 13) Sk = ( 1 -1)k) kOg I 

and where 

Tk := E ( lo (-1 ) j(log m )Xyv 
v=O j=1 

k-I v-i 

ZZ (v ) K ) (-1)V-j(logm)k-yj 
v=O j=O 

=E(y)(logm) yjY E (M _ ) 1) 

The inner sum in this last expression is 
kj (k i) (-1)" =j-1 

- 

so that 

Tk - ( ) (log m)k -yj _ 
(k- (_1)k-j(logm)kJy 

j=0 
j 

~~~j=O (k)i 

-E () (log m)kijyj _ k ( l )j(log m)jyk- 
__0 j= iJ 

This, with (7.13) and (7.12), proves (7.8). El 

Remark. If we set m = 2 in (7.8), we get 

(7.14) CVk 2 = (-l)k+1l k 2 - I Yk -2 (j) (-l)j(log2)jYk-j 

Corollary 12. For j > 0 and m > 1, denote 

Mj(m):= Eu 
m 

dlogid. 
di d I m 

Then for all k > O and m > 1 we have 

(7.15) E (/k() = ( 1)Mk+i(M) - Z() (-l)jMA (m)yk1j. 

(r, m)= I 

Proof. We sum (7.3) over all r, 1 < r < m, with (r, m) = 1, multiply both 
sides by m, and equate the left-hand side with the right-hand side of (4.5). If 
we denote 

m 
b,,:= E Iv(r) 

r 

r=lI 
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we get 

bk= k 1 {Nk i(m)-q,(m)logk+l, m} 
-k ( v) (Mlogm)k- 9 -Z (109 ) Nk-(m)Yu. 

By an induction similar to the one in the proof of Corollary 11, we find 

1 , ( k + 1 ) (-1)' (log m) Nk+l1(m) bk = k ( ) I k I (- (M) 

kI 

j=O = 

Using (4.2) and changing the order of summation, we get 

Z (;J) (-1)v(logm)j-vNv(m) = Mj(m). 

The assertion (7.15) now follows immediately. El 

Remarks. 1. With k = 0, and using the facts that Mo(m) = No(m) and 
Ml(m) = (log m)No(m) - Ni(m), we get with (4.3) and (4.4), 

r- /(r,m)=-P(m) {y+logm?+ZEip_1}; 
r=I plIm 

(r,m)=I 

this was derived by Lehmer [1 5]. 
2. If m is prime, then we have Mj(m) = m logJ m for j > 1 and Mo(m) = 

m - 1, and (7.15) coincides with (7.8). 
As a final remark in this section, we consider (7.4) and recall that the y, (r, m) 

can be given explicitly in terms of Y, y2', and some other known constants 
for m = 2, 3, 4, and 6 (see ?6). The same is true for the ig(r/m) (see, 
e.g., [3, p. 184]). This allows us to give explicit expressions for YVI(r/m) with 
m = 2, 3, 4, and 6. These can be considered as properties of the function 
R(x) defined by Deninger [8]. 

Example. Let r = 1 and m = 3. It is known that 

'( )= -Y 
3 

log 3 - 27/ 

Using (6.8) and (7.4), we get 

VI ) 
I - -YI + 2 (3log 3 + 7) 

y + 3 log2 3 

+ ?7x3{ log27r- ilog3 - logF()} 
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Incidentally, with (7.2), we can thus evaluate the series 

E{ log(v + 1/3) log v} 
1l v +1/3 v J 

Note that the constant yi is cancelled. 

Finally, we note that (7.3), considered as a linear system, can be solved for 
the ilv(r/m) in terms of yk(r, m) (see Corollary 3). 

8. NUMERICAL EVALUATION OF THE Yk(r, m) 

Lehmer [15] computed the yo(r, m) for m < 9 by use of the Euler-Maclaurin 
summation formula. This method can also be used to evaluate the Yk(r, m) 
for k> 1. 

The generalized Euler constants Yk, 1 < k < 19, were evaluated by Liang 
and Todd [16] with the aid of the slightly modified Euler-Maclaurin formula 

m m n n I 

im .fj)- { f(t) = ?f(j)- j f(t)dt- -f(n) 
(8.1) 

1=1 = 

ME (2j1f(2) )(n) + RM(n, oc), 

with 

(8.2) RM(P, q) - (2M ? 1)! j B2M+1(t- [t])f(2M+l)(t)dt, 

where B2M+1 (X) is the Bernoulli polynomial of degree 2M + 1 and B21 is 
the 2jth Bernoulli number (see, e.g., [1, p. 804]). For (8.1) to hold, we need 
that f have 2M + 1 continuous derivatives, and f(v) -+ 0 as t -+ oc for 
v = 1, 2, . ..., 2M + 1 . The parameters n and M are to be chosen such that 
the error RM(n, oc) stays within prescribed bounds. 

It is clear from the definition of the Yk (r, m) that for our purposes we have 
to take 

(8.3) f(t) mt+r 
m > 1 < r < m. 

The derivatives in (8.1) and (8.2) were computed in [16] by way of a multiple 
recursion, which would be fairly easy to program. However, we shall use an 
expression involving Stirling numbers of the first kind s(n, k) (see, e.g., [7, p. 
212 ff.] or [1, p. 824]). 

Lemma 2. Let fk(x) logk x/x. Then 

(v) k logi x 
(8.4) fk (x) = v+i Zs(v +1,k+1i) I ! k XV+1 

~i=O 
Proof. We use the following properties of the Stirling numbers of the first kind: 

(8.5) s(v+1,,u)=0 ifu=Ooru>v+1, 

(8.6) s(v+ 1, v+ 1)= 1, 

(8.7) s(v, u) - vs(v, uA+ 1) = s(v + I1, uA+ 1) for v, u > 0. 
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We prove now (8.4) by induction over v. For v = 0, the relation (8.4), with 
(8.5) and (8.6), gives fk(x) = logk x/x. Now suppose (8.4) is true for v. 
Differentiating both sides, we obtain 

k! (A .-og'' 

- (v + l)Zs(v? 1, k? 1 i) l } 
i=O k .)~~ logiX 

= ̂ +2 Z{sI)Es(, k ) (v + l)s(v ?1, k ?1 1- ___ 

i=O 

where we have used (8.5). We get now (8.4) for v + 1 by applying (8.7). El 

Remark. In the case k = 1, we get 

f(") (x) =(- I) ,[logx - I + 
I 

+ + I) 

(see,e.g., [16, p. 171] or [3, p. 197]). This follows from (8.4) with (8.6) and 

s(v + 1, 1) = (-1^! s(I ,2 (1> !( + 2 + - 

We return now to (8.1). With f(t) as in (8.3), we get 

|IO log k+(mn + r) _ logk+lr 1 

ml k ?1I k? f 

and the left-hand side of (8.1) becomes, with (1.4), 

1 logk+1 r 

k+1I 

The second term is cancelled in (8.1); with Lemma 2 we therefore get the first 
part of the following asymptotic representation. 

Proposition 12. For k > 0, m > 1, and 1 < r < m we have 

8.8) Yk (r, m) 
n 

log (mj + r) _ 1 log k+(mn + r) I log k(mn + r) 
(8.8) yk(r,m 

= mj?+r m k?+1 2 mn?r 

M k 
k (! k B2+ Z s(2j, k + 1 - i) log (min + r) 

L~ 2])! m(n + r/m)2j I 
j=1 ~~~~~i=O 

+ RM(n, oc). 

If n > ek7-1, then 

(8.9) JRm(n, oo)l < l 2 (2M + 2)! k! log (mn + r) 
(8.9) IRM(n, ooI?1 - 2-2M (27tn)2M+l 2M -6 
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Proof. It remains to estimate the error term RM(n, oc). With f as in (8.3), 
we have by (8.4) 

2M1 ~k!m 2M+1 k 1 f(2M+ )(t) = (t + )2M+2 E N!s(2M + 2, k + 1 -i) log'(mnt + r) 

and therefore, using (8.5), 

If(2M+ )(t)I ? k!m2M+l Z Is(2M + 2 1)| log (mt + r) 
< kE s(M +2=0) (Mt + r)2M+2' 

The sum of the "unsigned" Stirling numbers is (2M+ 2)! (see, e.g., [7, p. 213]). 
Hence, 

(8.10) If(2M+)(t) ?< k!(2M + 2) !m2M+l log (mt + r) j - ~~~~~~(Mt + r)2M+2' 

Furthermore, we have 

IB2+l(t- N I< 
1 2(2M?+ 1)! 

IB2M+l( t-[t])lI < 1 - 2-2M (27r)2M+1 

(see, e.g., [1, p. 805]), so that, with (8.10) and (8.2), we get 

(8.1 1 ) JRm(n, o) < 2k!m2M+1 (2M + 2)! log k(mt + r) dt (8.11) IRM(n, -o I 1 - 2-2M (27r)2M+1 
j Mt +r dtM . 

It is easy to verify that logk (mt + r)/(mt + r)7 is decreasing as a function of t 
if log(mt + r) > k/7. Since t > n and m > 1, r > 1 , this holds when 

(8.12) n > ek/7 - 1. 

Hence, under condition (8.12) we have 

2k!m 2M+1 (2M + 2)! logk(mn + r)f 
JRM(n, oo)l <1-2 M (2M+1 ( 7] (mt + r)-2M+5 dt. 

Upon integrating and using the fact that mn + r > mnn, we obtain the estimate 
(8.9). o 

Equation (8.8) proves to be convenient for computation with the symbolic 
manipulation package MAPLE. Bernoulli and Stirling numbers are "known" to 
MAPLE; hence minimal programming effort is required. The yk(r, m) were 
computedfor 1 <k< 20, 1 < m < 9, and 1 <r< m. For 1 <k < 10 one 
obtains, by (8.9), IRM(n, oo)I < 0.15. 10-15 for n = 40 and M = 10. For 
11 < k < 20, the choice was n = 40 and M= 20; in this case, IRM(n, oo)I < 
0.31 * 10-14. Because of high cancellations (see the remarks on this problem 
in [16]), all calculations were carried out to 40 digits accuracy; Table 1 in the 
Supplement section at the end of this issue shows 12 significant digits. The 
values for Yk (1, 1), 1 < k < 20, agree with those for Yk in the tables in 
[16, 4]. 
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